
September ‘2025

BAILSEC.IO

OFFICE@BAILSEC.IO

X: @BAILSECURITY

TG: @HELLOATBAILSEC

FINAL
REPORT

On-chain
Lottery System

Bailsec.io

 - 1 -

Disclaimer:

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in this
report should not be considered a comprehensive list of security issues, flaws, or defects in
the target system or codebase.

The content of this assessment is not an investment. The information provided in this report is
for general informational purposes only and is not intended as investment, legal, financial,
regulatory, or tax advice. The report is based on a limited review of the materials and
documentation provided at the time of the audit, and the audit results may not be complete or
identify all possible vulnerabilities or issues. The audit is provided on an "as-is," "where-is," and
"as-available" basis, and the use of blockchain technology is subject to unknown risks and
flaws.

The audit does not constitute an endorsement of any particular project or team, and we make
no warranties, expressed or implied, regarding the accuracy, reliability, completeness, or
availability of the report, its content, or any associated services or products. We disclaim all
warranties, including the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement.

We assume no responsibility for any product or service advertised or offered by a third party
through the report, any open-source or third-party software, code, libraries, materials, or
information linked to, called by, referenced by, or accessible through the report, its content,
and the related services and products. We will not be liable for any loss or damages incurred
as a result of the use or reliance on the audit report or the smart contract.

The contract owner is responsible for making their own decisions based on the audit report
and should seek additional professional advice if needed. The audit firm or individual assumes
no liability for any loss or damages incurred as a result of the use or reliance on the audit
report or the smart contract. The contract owner agrees to indemnify and hold harmless the
audit firm or individual from any and all claims, damages, expenses, or liabilities arising from
the use or reliance on the audit report or the smart contract.

By engaging in a smart contract audit, the contract owner acknowledges and agrees to the
terms of this disclaimer.

Bailsec.io

 - 2 -

1. Project Details

Important:
Please ensure that the deployed contract matches the source-code of the last commit hash.

Project

On-chain Lottery System

Website

Language Solidity

Methods Manual Analysis

Github repository 4debc57ad5ee3aac3cbcd4330d0c1475b2b36241

Resolution 1 commit/de871c4646dfc4b8a5cdabdbcf58df977c77daeb

Resolution 2 commit/574070d636dab8c904b4d1365a1f1ae70ee1b7c7

https://github.com/Blockchain-RA2-Tech/philippe/commit/4debc57ad5ee3aac3cbcd4330d0c1475b2b36241
https://github.com/Blockchain-RA2-Tech/philippe/commit/de871c4646dfc4b8a5cdabdbcf58df977c77daeb

Bailsec.io

 - 3 -

2. Detection Overview

Severity

Found

Resolved

Partially
Resolved

Acknowledged
(no change made)

Failed
resolution

Open

High 2 2

Medium 5 5

Low 2 1 1

Informational 5 3 1 1

Governance

Total 14 10 3 1

2.1 Detection Definitions

Severity

Description

High The problem poses a significant threat to the confidentiality of a
considerable number of users' sensitive data. It also has the
potential to cause severe damage to the client's reputation or
result in substantial financial losses for both the client and the
affected users.

Medium While medium level vulnerabilities may not be easy to exploit,
they can still have a major impact on the execution of a smart
contract. For instance, they may allow public access to critical
functions, which could lead to serious consequences.

Low Poses a very low-level risk to the project or users. Nevertheless
the issue should be fixed immediately

Informational Effects are small and do not post an immediate danger to the
project or users

Governance Governance privileges which can directly result in a loss of funds
or other potential undesired behavior

Bailsec.io

 - 4 -

3. Detection

LottoToken

The LottoToken contract is a simple ERC20 contract with permit functionality. On deployment,
it mints an initial supply of tokens to a specified recipient.

No issues found.

Bailsec.io

 - 5 -

PhilippeHelper

The PhilippeHelper contract implements helper functions for packing/unpacking prize and
entry data into compact single-slot storage using bit manipulation.

User combinations are stored as bitfields with the leading 96 bits containing the bonus
numbers and the rest 160 bits containing the main numbers. Of the 96 bits for bonus numbers,
only 64 are used, and the leading 32 bits are actually empty.

Entry IDs are generated from the user combinations by packing the leading empty 32 bits with
the current draw ID.

PrizeTiers stores the number of main number matches and the number of bonus number
matches. PrizeTierIDs also pack the first 32 bits with the drawID.

Prize tier data is stored in an array with 2 slots dedicated to each main number match, bonus
number match combination. This is done by calculating the index as follows.

index_ = 2 * (mainMatchesCount * (uint256(bonusNumbersCount) + 1) + bonusMatchesCount);

The first index is used to store the fee in bps for the prize tier, and the second index stores
the share in bps of the pot that is assigned to that prize tier.

Bailsec.io

 - 6 -

PhilippeTypes

The PhilippeTypes contract implements bit manipulation operations on the various custom
datatypes used in the system, storing bitfields. It implements comparison and counting
operations on the bitfield types, which are then used in the main contracts of the system.

Philippe

The Philippe contract is the main contract of the system, handling the sale of tickets, random
number drawing, and the distribution of prizes.

Appendix: Participation
Users participate in the lottery by calling the buyEntry function and buying a ticket for a
specified combination. Users can participate with multiple tickets at the same time by
choosing more numbers than necessary, and the system handles all possible combinations of
their selected numbers that can be valid tickets and rewards them later accordingly. If the
user chooses N main numbers and each lottery is resolved using R main numbers, the users
are essentially sold NCR lottery entries at the same time.
The ticket proceeds go towards the pot of the next lottery round. Users are charged stETH for
the tickets, but they can also pay with raw ETH if required.

Appendix: Draws
After a minimum time period has elapsed since the start of the lottery, any user can call the
requestDraw function with some ETH to invoke the Chainlink VRF system to generate a
random number. At this moment, the request ID of the Chainlink request is recorded, and all
lottery ticket sales stop. The caller is given a preset amount of reward for advancing the
lottery to the next step.
After a few blocks, the Chainlink DON calls the fulfillRandomWords function with a random
seed. This seed is then used to generate a series of main and bonus numbers using Floyd’s
algorithm. The original random seed is hashed over and over again to create new pseudo-
random numbers for each iteration of the algorithm.

Appendix: Rewards
The lottery rewards are distributed in a 2-step process. In the first step, ticket holders or
delegated entities call the submitEntry function to submit the lottery ticket for rewards. This
step calculates the number of matches between the ticket and the result, and decides on
prize tiers for the same. For tickets with more main numbers than required, the contract

Bailsec.io

 - 7 -

calculates every possible substring of the user’s ticket and signs them up for every possible
prize tier they are eligible for.

Once the time window for ticket submissions has passed, users can call the claimPrize
function to claim rewards. Each prize tier is allocated a share of the pot, which is then divided
amongst all the participants with tickets in that prize tier. Users must claim their prizes within
the specified time window; otherwise, they risk losing their rewards and having them roll over
to the next lottery.

The jackpot is won when all the main numbers as well as the bonus numbers of a ticket match
the draw result. The jackpot is assigned the largest share of the pot, which is then divided
between all holders of the jackpot tickets.

Appendix: Attestation
A new round is started only after a jackpot is either confirmed to be present or absent, which
is confirmed by the attestation mechanism. If a jackpot entry exists after the draw, anyone
can submit that entry using the submitEntry function, which also starts the next round.
However, if the jackpot entry is absent, users can call attestNoWinner and put up an
attestation collateral in eth. If unchallenged, the validateNoWinner function can be called after
a set period of time, repaying the attestation collateral along with a bonus and then starting
the next round. If, however, the function attestNoWinner was called fraudulently, anyone can
submit the existence of the actual jackpot entry and claim the attestation collateral
themselves.

This design allows a fast turnover of the lottery system. The jackpot prize is the largest
amount of funds being rolled over, and is thus essential for the next round of the lottery. Thus,
it is expected that the moment a winner is discovered, their ticket entry will be submitted, and
if not, the attestation mechanism will ensure that the next round will be started at most a
certain fixed time period later.

Core Invariants:

INV 1: When buying entries with more main numbers than needed, all possible substrings of the
entry are considered during reward calculations.

INV 2: buyEntry stops the moment a randomness request is sent

INV 3: Entries can be submitted only within the timeframe [drawTimestamp, drawTimeStamp +

Bailsec.io

 - 8 -

submitEntryPeriod) and prizes can be claimed only within the timeframe [drawTimeStamp +
submitEntryPeriod, drawTimeStamp + winDistributionPeriod). This holds true but separately
for both jackpots as well as partial prizes.

INV 4: validateNoWinner can only be called if an attestation was already present and after an
attestationPeriod amount of time from the beginning of the attestation.

Privileged Functions

- executeEmergencyShutdown
- initiateShutdown
- withdrawUnallocatedAmount
- withdrawNativeCurrency
- setFeeCollector
- setAttestationCollateral
- setAttestationPeriod
- collectFeesAndYield
- setRequestDrawRewards
- setValidateNoWinnerRewards
- setAttestWinnerRewards
- setReallocateFundsRewards
- setAttestorRewardBps

Bailsec.io

 - 9 -

Issue_01 _submitEth does not repay excess funds

Severity Medium

Description Users have the option to pay with native ETH when participating in
the lotto process. In that case, the user’s passed-in ETH amount is
wrapped in stETH, and the final balance is checked in the
_submitEth function.

The issue is that since the stETH-ETH ratio fluctuates, the user will
likely send more eth than needed, in order not to have their revert
due to an insufficient amount. However, these excess funds are
never returned to the user and are instead stored in the contract as
yield.

Recommendations Consider repaying the user the excess stETH.

Comments /
Resolution

Fixed by switching from stEth to WBNB.

Bailsec.io

 - 10 -

Issue_02 Negative stETH rebases can lead to temporary halts

Severity Medium

Description The stETH balance of the contract can go down due to slashing.
Since stETH is a rebasing token, it can get rebased down in case of
a faulty/malicious validator in the LIDO network. This is a
documented risk in their docs.

Due to such negative rebases, the current contracts can encounter
a revert, since there will be less than expected stETH. In the
_transferToAndUpdateAcc function, stETH is transferred out to
prize claimants. If insufficient, this function reverts.

if (totalAmount <= Constants.STETH.balanceOf(address(this))) {
 //…
} else {
 revert IPhilippe.PhilippeInsufficientBalance();
}

This is also encountered when calling the
withdrawUnallocatedAmount function in the admin library, which
tries to take out the entire amountToWin, which might not be
actually present in case of a negative rebase, reverting that flow.

This issue is also encountered whenever rewards are distributed to
callers via the _sendRewardsTo function. This function only checks
against the pot size, not the actual stETH balance. If the pot size is
non-zero, it will try to give out rewards that might not be present in
the contract and thus revert. This will block attestation calls as well
as rollover calls.

The project acknowledges this behaviour for withdrawals/prize
claims; however, the same issue also affects attestations,
shutdowns, and rollovers, which are all essential parts of the
system.

Recommendations Consider acknowledging if temporary halts are acceptable or if the
admin can fund stETH in case of a slashing to keep the system

Bailsec.io

 - 11 -

operational. Otherwise, consider using wstETH instead, whose
balance never gets decreased.

Comments /
Resolution

Fixed by switching from stEth to WBNB.

Issue_03
_drawDistinctNumbers with a probabilistic number of iterations is
invoked inside fulfillRandomWords, which must complete execution
within a pre-agreed amount of gas

Severity Low

Description Rejection sampling performed inside _drawDistinctNumbers to
avoid modulo bias causes the number of iterations to be
probabilistic. This means we can’t calculate the exact gas required
for the execution accurately and will have to take an estimated
upper bound. Testing with values can be done to calculate this
amount, but it would be a better practice to avoid this form of
iteration and place it in a separate function that can be invoked
outside of fulfillRandomWords.

Recommendations Since in certain situations there can be an insufficient amount of
gas, consider breaking up the randomness storage and drawing into
separate functions, where the draw can be performed by a different
user who can send a variable amount of gas.
The fulfilrandomness function can try to draw the numbers, but
should not fail if it runs out of gas, since that would block the
Chainlink call.

Comments /
Resolution

Acknowledged.

Bailsec.io

 - 12 -

Issue_04 Multiple updates of drawTimestamp

Severity Informational

Description The drawTimestamp for the current round is set on requestDraw

function requestDraw() external payable nonReentrant {
 //…
 requestId = _requestRandomnessToChainlinkVRF();
 drawData.requestId = requestId;
 drawData.drawTimestamp = block.timestamp;
 emit DrawRequested(drawId, requestId);
 //…
 }

But then overridden on fulfillRandomWords when the VRF wrapper
completes the request.

function fulfillRandomWords(uint256 requestId, uint256[] memory
randomNumbers) internal override {
 //…
 drawData.combination = winningCombination;
 drawData.drawTimestamp = block.timestamp;
 emit DrawCompleted(drawId, winningCombination);
 }

This means the initial timestamp set on requestDraw is redundant

Recommendations The drawTimestamp should either be set on requestDraw or
fulfillRandomWords.

Comments /
Resolution

Fixed by removing drawTimestamp from requestDraw.

Bailsec.io

 - 13 -

Issue_05 Unnecessary excess currency check for WBNB

Severity Informational

Description The _depositNative function checks if the submitted amount
matches the amount received, within a margin of error. This was
necessary earlier, since stEth was used which had a volatile
exchange rate to Eth.

require(
 balanceOf >= expectedBalance && balanceOf <=
expectedBalance.rawAdd(Constants.MAX_EXCESS_CURRENCY),
 PhilippeFailedNativeDeposit()
);

Now that the working token has been switched to WBNB, this is
unnecessary and can be removed.

Recommendations With WBNB, the balanceOf will always match expectedBalance, so
this check is unnecessary and can be removed.

Comments /
Resolution

Bailsec.io

 - 14 -

RoundSettingsManager

The RoundSettingsManager contract is used to create the configuration of a lottery round,
based on certain admin presets and the size of the pot. The contract implements a red-black
binary tree to access a tree populated with difficulty values efficiently. One of multiple preset
conditions is then chosen based on the difficulty value of the current pot, as calculated by the
DifficultyAdjuster contract. The contract also implements the _verifySettingsValidity function,
which runs sanity checks on the time restrictions specified in the system, making sure the
time windows in the system are positive and sensible.

Core Invariants:

INV 1: Jackpot distribution starts at least 1 minute after jackpot entry period ends.

INV 2: Partial win distribution starts at least 1 minute after the partial win entry period ends.

INV 3: Jackpot distribution deadline is after the partial win period deadline

Issue_06
Partial matching prizes of multicombination jackpot winning entries
cannot be claimed in case submitJackpotEntryPeriod is >=
partialWinsDistributionPeriod

Severity Medium

Description Currently, it is not considered that submitJackpotEntryPeriod has
to be less than partialWinsDistributionPeriod. This is essential
because multicombination jackpot-winning entries can only be
submitted for claiming once the submitJackpotEntryPeriod expires.
And if by this time the claiming period of partial wins also ends, the
winner won’t be able to claim it

Recommendations Ensure that (partialWinsDistributionPeriod -
submitJackpotEntryPeriod) is a sufficiently high value

Comments /
Resolution

Fixed by requiring partialDistributionPeriod to be at least 1 minute
after submitJackpotEntryPeriod.

Bailsec.io

 - 15 -

DifficultyAdjuster

The DifficultyAdjuster contract is used to calculate the appropriate difficulty level of the new
round. The difficulty level is estimated primarily from the pot size of the new round and the
base pot size of the last round. If the pot amount has increased, the contract searches for a
preset difficulty level in the preset red-black binary tree. It then chooses the higher of the
nearest difficulty levels if available, and sets it as the difficulty of the current round. If the pot
size has decreased, the difficulty is kept the same as that of the last round.

Core Invariants:
INV 1: _retrieveNearestDifficultyLevel retrieves a difficulty value equal to or the nearest higher
difficulty level than the one provided. If unsuccessful, the nearest lower value is returned.

Bailsec.io

 - 16 -

Issue_07 Unreachable code - pot amount cannot exceed Uint112.max

Severity Informational

Description In DifficultyAdjuster::computeDifficultyLevel there’s the following if-
else block

if (potAmount <= type(uint224).max) {
 // retrieve the nearest existing difficulty level after or
before
 // the cast is safe because it was checked just above
 difficulty_ =
_retrieveNearestDifficultyLevel(uint224(potAmount));
 } else {
 // retrieve the highest existing difficulty level
 difficulty_ = _retrieveHighestDifficultyLevel();
 }

The issue is that the potAmount is a uint112, if we trace the initial
call path Philippe-> getRoundSettings -> computeDifficultyLevel we
can see that potAmount was initially a uint112 and implicitly
converted to uint256

Recommendations The if-else block can be removed, since it's redundant.

Comments /
Resolution

Fixed following recommendation.

Bailsec.io

 - 17 -

PhilippeAdmin

The PhilippeAdmin library provides owner-only administrative functions for the Philippe
lottery system, including emergency shutdown capabilities that allow fund recovery in case of
a Chainlink VRF failure/timeout. The contract also implements functions to withdraw
unallocated stETH funds in case of a shutdown, as well as recovery of any ETH present in the
contract. To trigger a normal shutdown, admins can call the initiateShutdown function, and
after the end of the current lottery round, the contract will stop future rounds from being
started.

Appendix: Shutdown
When an admin calls the initiateShutdown function, the shutdown state is marked as Initiated
in the contract. After this, if a new lottery round creation is attempted, either via submitting a
jackpot entry or validating the absence of a jackpot entry via attestations, the system shuts
down instead. The round ID is not updated, the shutdown state is set as Validated, and the
funds are then made available for recovery.

For the special scenario where intervention is required due to a failure of Chainlink VRF, the
executeEmergencyShutdown allows admins to shut down a currently running active round of
lottery. The funds are recovered and sent to the specified address, and the shutdown state is
marked as validated.

Core Invariants:

INV 1: executeEmergencyShutdown can only be called if the current round has been started at
least roundDuration + 24 hours ago.

Bailsec.io

 - 18 -

Issue_08
withdrawUnallocatedAmount can be invoked before the shutdown
state is Validated

Severity Low

Description The admin can withdraw all the funds from the next draw even
before the shutdown state becomes Validated. This is flawed as it
could cause no amount to be left over to give out caller rewards in
the _attestWinnerValidated path

Recommendations Consider allowing the withdrawUnallocatedAmount to be invoked
only after the shutdown state becomes Validated

Comments /
Resolution

Fixed following recommendation.

Bailsec.io

 - 19 -

PhilippePrizeDistribution

The PhilippePrizesDistribution library manages the core prize distribution mechanics for the
Philippe lottery system, handling entry submissions, prize calculations, and claim processing
for both jackpot and partial win scenarios. It implements a two-phase process where players
first submit their winning entries after the draw is completed, then claim their proportional
share of prizes based on matching numbers and the total number of eligible entries in each
prize tier. The library includes automated reallocation functionality that redistributes
unclaimed prizes from expired rounds to future draws, and supports both single-combination
and multi-combination entries with complex mathematical calculations for prize eligibility and
distribution amounts.

Appendix: Reallocation
Every prize tier is assigned a certain share of the whole pot. If there are multiple entries for a
tier, that share is split amongst the participants, and if there is no entry for a tier, that share
goes unpaid. After the deadline for prize claims, all the unclaimed prize tier funds are
reallocated to future rounds.

If the jackpot goes unclaimed, it is immediately reallocated to the next 2 rounds the moment
the new round starts. If the other partial win prize tiers go unclaimed, the contract schedules
reallocation calls in the future, based on the submission/claim deadlines. Once the deadline
passes, anyone can call reallocateUnclaimedAmount directly or internally via other functions
to carry out the scheduled reallocations. This moves all unsubmitted and unclaimed prizes to
the next immediately available round. This system ensures that all funds in the contracts keep
getting reused and are not trapped.

Core Invariants:

INV 1: Submits, claims, and attestations only work after a winning combination has been
selected.

INV 2: If a jackpot-winning entry is confirmed present via submission, or confirmed absent via
attestation, the next round starts

Bailsec.io

 - 20 -

Issue_09
Jackpot amount per winner can be slashed due to missing
validation checks when submitting a jackpot entry

Severity High

Description Anyone is allowed to submit a jackpot entry on behalf of a player.

The player address is retrieved from entryIdToPlayers using the
entryId and the player's index, but the player address is not
checked/verified (missing address(0) check)

// verify the entry player's address
 prizeDistribution.entryId =
entryRepresentation.playerCombination.toEntryId(entryRepresenta
tion.drawId);

 prizeDistribution.entryPlayerAddress =
s.entryIdToPlayers[prizeDistribution.entryId][entryRepresentation.i
ndex];

Afterwards, the player's address is deleted

delete
s.entryIdToPlayers[prizeDistribution.entryId][entryRepresentation.i
ndex];

However, this only sets the address to address(0).
This means anyone can submit the same jackpot entry (i.e., with the
entryId & index) again, even though the player address will be
address(0) for the subsequent times.

The main issue is that submitting a jackpot entry increases the
eligibleCombinationsCount for the jackpot prize tier.
Since the prize per entry is calculated as !"#	!%&'(

()&*&+)(,"-+&./#&".0,"1.#
 , this

allows a malicious actor to reduce the prize amount per jackpot win
by submitting an already submitted entry multiple times, increasing
eligibleCombinationsCount

Bailsec.io

 - 21 -

Recommendations On submitEntry, verify that the player address has not already been
deleted (i.e. address(0))

Comments /
Resolution

Fixed. Now address(0) is checked in the jackpot winning path as
well.

Issue_10
reallocateUnclaimedAmount sends rewards from the current
drawId, rustling in possible underflows

Severity High

Description The _sendRewardsTo function deducts the amountToWin from a
round to send stETH to callers to pay them for doing certain
actions. Normally, this is always taken from the next round’s pot.

DrawId drawId = s.drawId;
….
Rewards._sendRewardsTo(msg.sender, drawId, callerRewards);

However, in the reallocateUnclaimedAmount function, this is
deducted from the current pot. This changes the amountToWin of
an active round. So if this function is called while users are actively
claiming prizes, the amountToWin of the round will get reduced, and
some users will get fewer prizes than other users even if they hold
the same lotto tickets. This makes the prize system unfair.

This can also cause underflow inside _calcReallocationAmount since
the sum is only guaranteed to be less than amountToWin and not
any lower value. An underflow inside _calcReallocationAmount can
brick the entire round progression mechanism.

Recommendations Pay from the next round.

Comments /
Resolution

Fixed. Now rewards are paid out from the next round.

Bailsec.io

 - 22 -

Issue_11 Attestor can do a gas griefing attack, delaying round starts

Severity Medium

Description When validateNoWinner is called, the attestor who had put up some
collateral gets repaid via the _tryTransferNativeCurrencyOrSteth
function. The issue is that this function first tries to send eth with
the entire gasleft() amount, and only then tries wrapping it to stETH.

The attestor can implement a receive function in their address and
burn all passed in gas. Due to the 63/64 rule, this won't cause an
immediate DOS but will allow the attacker to burn up 98% of the
passed-in gas. This means for a successful call, the caller must pass
in 64x the required amount of gas, such that after burning 98% the
remaining gas is still enough to call the stETH wrapping and
sending.

Thus, the attestor can disincentivize validators, causing a soft DOS
until an admin agrees to eat the extra cost to push the transaction
through.

Recommendations Consider using forceSafeTransferAllETH, which uses a strict stipend
to prevent this griefing vector.

Comments /
Resolution

Fixed following recommendation, call only forwards 100,000 gas.

Bailsec.io

 - 23 -

Issue_12
_attestWinnerValidated can be invoked repeatedly after shutdown,
since drawId doesn’t get incremented

Severity Medium

Description In case of jackpot jackpot-winning entry, the submitEntry function
always invokes _attestWinnerValidated in case the submitted
drawId equals the current drawId. This is based on the assumption
that the drawId always gets incremented after an
_attestWinnerValidated call. This assumption is incorrect, as if the
shutdown state is != NotInitiated, the drawId remains the same.
Hence, a user would be able to repeatedly call the
_attestWinnerValidated function afterward,s which causes several
problems like double counting of assets by incorrect pushes to
reallocation queue, jackpot amount double counting in case
validateNoWinner was invoked earlier, rewards farming, etc.

 if (entryRepresentation.drawId == s.drawId) {
 // if a jackpot winning ticket is submitted for the current
round, we attest its presence
 _attestWinnerValidated(entryRepresentation.drawId,
roundSettingsManager);

Recommendations In case of a shutdown, make sure rollovers are not queued multiple
times.

Comments /
Resolution

Fixed. _attestWinnerValidated is not called if shutdown is validated.

Bailsec.io

 - 24 -

Issue_13
previousBasePot calculation is not fully accurate, as it doesn’t
involve the reduced rewards

Severity Informational

Description The previousBasePot value is calculated as follows

 if (DrawId.unwrap(previousDrawId) != 0) {
 // calculate the previous base pot
 previousBasePot = FixedPointMathLib.fullMulDivUp(
 previousDrawData.amountToWin, Constants.BPS_DIVISOR,
s.roundSettings.potAllocationBps
);

But this is not entirely accurate, as caller and attestor rewards were
further reduced from the allocation fraction to obtain amountToWin.
The current basePot amount being compared did not have those
numbers reduced yet.

Recommendations Consider acknowledging this issue, since the difference will be small
under normal operating conditions.

Comments /
Resolution

Acknowledged.

Bailsec.io

 - 25 -

PhilippeRewards

The PhilippeRewards library manages gas cost reimbursement and incentive mechanisms for
users who perform critical protocol operations such as requesting draws, validating no-winner
scenarios, attesting winners, and reallocating unclaimed funds. It calculates rewards based on
current network gas fees (capped at configurable maximum base fees) multiplied by
adjustable multiplier rates, with rewards paid from the next round's prize pool in stETH tokens.
The library includes administrative functions to configure reward settings for different
operations and implements validation checks to ensure reasonable gas fee caps and
multiplier ranges to prevent misconfigurations while maintaining protocol sustainability

Core Invariants:

INV 1: Rewards sent via _sendRewardsTo are taken from the next available pot.

INV 2: gas fee reimbursement in _calcRewards is capped to a specified maxBaseFee limit.

No issues found

Bailsec.io

 - 26 -

PhilippeUtils

The PhilippeUtils library provides essential utility functions for the Philippe lottery system,
managing stETH token transfers with balance tracking, mathematical calculations for prize
distributions, and automated fee collection. It handles the protocol's storage access, safe
token operations, accounting for stETH rebasing, and transfers accumulated fees to the
designated collector with optional callback functionality.

Core Invariants:

INV 1: Only stEth tokens above the recorded balanceAccumulator amount are regarded as
yield and processed accordingly.

INV 2: balanceAccumulator always gets updated when stEth is transferred in or out of the
system by the movement amount.

Bailsec.io

 - 27 -

PhilippeConstants

The PhilippeConstants library defines system-wide constants for the Philippe lottery protocol,
including the stETH token address, basis points divisor, bit field layouts for combinations and
prize tiers, attestation limits, gas cost estimates, and EIP712 typehashes for delegation
signatures.

Issue_14 Dummy values present for gas costs

Severity Informational

Description Variables REQUEST_DRAW_GAS_COST,
VALIDATE_NO_WINNER_GAS_COST, ATTEST_WINNER_GAS_COST, and
REALLOCATED_PRIZE_GAS_COST contain placeholder values that
don't reflect the actual gas costs. These should be updated to
match actual on-chain gas costs before deployment.

Recommendations Update the variable to match actual gas costs when calling those
functions.

Comments /
Resolution

Fixed. Dummy values have been updated. But it would be ideal if the
values are modifiable (at the expense of a slight gas cost increase)
in order to incorporate any change in gas pricing.

	T1
	Bailsec - On-chain Lottery System- Final Report

